

PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

I B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, FEB - 2023 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING (Common to CE,ME,AME,CSE(IOTCSBT),AIDS,AIML Branches)

Note: Question Paper consists of Two parts (Part-A and Part-B)
 PART-A

Answer all the questions in Part-A ($5 \mathrm{X} 2=10 \mathrm{M}$)

Q.No.	Questions	Marks	CO	KL
1	a)	State Kirchhoff's Laws.	$[2 \mathrm{M}]$	1
	b)	A Sinusoidal Voltage is represented as 141.42 Sin 314t. What are the RMS value and Frequency of Voltage?	$[2 \mathrm{M}]$	2
	c)	On what factors the induced emf of transformer depends?	$[2 \mathrm{M}]$	3
	d)	What are the methods of Speed control of DC Motor?	$[2 \mathrm{M}]$	4
	e)	Differentiate PNP and NPN Transistors.	$[2 \mathrm{M}]$	5

PART-B

Answer One Question from each UNIT (5X10=50M)

		Questions	Marks	CO	KL
UNIT-I					
2.	a)	Explain in detail the volt-ampere relationship of R, L and C elements with neat diagrams.	[5M]	1	
	b)	For the circuit shown in Figure 1, find the current flowing in all the branches Using Kirchhoff's Laws. Figure 1	[5M]	1	
OR					
3.	a)	State and explain superposition theorem	[4M]	1	
	b)	Find the voltage across terminals 'a' and 'b' of the network shown in Figure - 2 using source transformation theorem Figure-2	[6M]	1	

UNIT-II					
4.	a)	Define -i) form factor and ii) peak factor	[4M]	2	
	b)	Find the average value for the following ware form.	[6M]	2	
OR					
5.		In a series circuit consisting of pure resistance and a pure inductance, the current and the voltage are expressed as $\mathrm{i}(\mathrm{t})=5 \sin (314 \mathrm{t}+2 \pi / 3)$ and $\mathrm{v}(\mathrm{t})=15 \sin (314 \mathrm{t}+5 \pi / 6)$. Determine the (i) Impedance, (ii) Resistance, (iii) Inductance, (iv) Average Power, (v) Power Factor in the Circuit	[10M]	2	
UNIT-III					
6.	a)	Define i). MMF , ii). Flux , and iii). Reluctance.	[5M]	3	
	b)	Compare magnetic circuit with electric circuit.	[5M]	3	
OR					
7.	a)	Explain about the constructional features of transformer.	[5M]	3	
	b)	Obtain an expression for induced emf in transformer.	[5M]	3	
UNIT-IV					
8.	a)	Explain the functions of the following wrt DC Generator. i) Field pole system ii) Yoke and iii) Commutator	[5M]	4	
	b)	Write the c.m.f equation of a D.C generator and derive it	[5M]	4	
OR					
9.	a)	A Slip-Ring Induction Motor runs at 960 rpm at full load, when connected to $50-\mathrm{Hz}$ supply. Determine the number of Poles and Slip	[5M]	4	
	b)	Explain the Principle of operation of alternator.	[5M]	4	
UNIT-V					
10.		Describe the different characteristics of the PN junction diode. Mention its applications.	[10M]	5	
OR					
11.	a)	Discuss the different types of Transistors.	[5M]	5	
	b)	Describe the Characteristics of Operational Amplifiers.	[5M]	5	

Page $\mathbf{3}$ of $\mathbf{2}$

